3 de maig de 2017

Una qüestió d'intercanvis

Aquest problema l'he conegut per Abel Hernández, alumne de Didàctica de les matemàtiques de Sergi Muria (@smuria)  i Jordi Font (@jfontgon) a la UB. És prou interessant com per dedicar-li un temps d'estudi. Com en molts problemes no interessen tant els casos particulars com la generalització. Però... com arribar a ella sense els casos particulars? Per altra banda, és un problema molt bonic per treballar-lo a l'aula reproduint-lo amb els propis alumnes.

Imaginem la situació següent: tenim una certa quantitat de persones, cadascuna amb un objecte personal. Les posem en fila, una al costat de l'altra. Cada persona pot fer dues coses: quedar-se amb l'objecte que té o intercanviar-lo amb una de les persones que tingui al costat. Aquest procés només es fa una vegada. El problema és esbrinar quantes distribucions d'objectes diferents podem obtenir després de fer-ho. En el següent vídeo podem veure quantes en podem obtenir amb tres participants.


Amb tres persones no és difícil d'analitzar. Si el segon no vol fer cap intercanvi cadascun es quedarà amb el seu objecte (el 1r i el 3r no se'l poden intercanviar). Si el 1r i el 2n se l'intercanvien el 3r es quedarà mirant. I si fan l'intercanvi el 2n i el 3r serà el 1r el que es quedarà amb el seu objecte. Hi ha tres casos.

Però i si són quatre persones? I si són cinc?

Investiguem?

18 d’abril de 2017

Un joc d'estratègia amb aire diofàntic

A la 53a Olimpiada Matemática Española, celebrada al mes de març de 2017, es va proposar el següent problema que convida a analitzar un joc. El més interessant és que, canviant els nombres, es pot jugar des de l'educació primària. Però la cerca d'una estratègia també comporta un bon treball matemàtic. La imatge del full de l'enunciat me la va enviar l'amic i especialista en jocs Jordi Deulofeu.


El joc es planteja sobre un tauler però poder fer un equivalent numèric ràpidament:
"Cada jugador pot sumar 53 o restar 2 alternativament. Es comença des de zero i guanya qui arriba exactament a 2017. No es pot sobrepassar en cap moment el 2017 ni es pot baixar de zero."
Com que no som "olímpics" treballarem el joc "a pic i pala". És interessant perquè en el seu estudi es poden veure dues fases ben diferents i, en una d'elles, la representació visual que fem ens pot ser de gran ajuda ja que ens permetrà fer analogies no numèriques per a la cerca de l'estratègia.

Reduïm el joc i fem les primeres passes

És molt habitual en l'anàlisi de jocs fer variacions que simplifiquin el problema i així poder facilitar els descobriments. Per exemple podem jugar amb +7 i -2 i que el límit sigui 23. Fins i tot per estudiar-lo a l'aula seria molt millor presentar inicalment una versió reduïda i més accessible. Abans de seguir llegint et proposem que analitzis el joc. I si ara no en tens ganes de fer-ho... continua la lectura.

Amb aquests nous nombres, quina quantitat anterior a 23 m'assegura guanyar? La resposta no és massa difícil: 18. Si al contrari li deixo 18 no pot sumar 7, perquè es passaria de 23, per tant està obligat a restar 2 deixant 15. Ara només em caldrà sumar 8 per arribar a 23. Molt bé, però quina quantitat anterior m'assegura arribar al 18 guanyador. Aplicant un raonament regressiu (molt habitual també en l'anàlisi de jocs) veurem que també seran 5 abans del 18: el 13. Si suma 7 podré restar 2 i deixar el total en 18 (13+7-2=18). Si en resta 2 podré sumar 7 i tornar a deixar en 18 (13-2+7=18). Fent aquest raonament regressiu veiem que els nombres guanyadors són:

18 - 13 - 8 - 3

A partir de qualsevol d'aquests nombres només cal fer "el contrari" que l'altre jugador: si suma 7 restarem 2, i si en resta 2 sumarem 7. Hi ha un nombre clau amagat que marquen les solucions: van de cinc en cinc. El cinc s'obté dels nombres del joc 7-2. El 3 que inicia la sèrie tampoc és difícil de calcular: és el residu de dividir 23 entre 5.

Com aconseguir un nombre guanyador?

El problema ara és com aconseguir una d'aquestes quantitats. Una possibilitat és fer un diagrama en arbre de les possibles jugades i "netejar-lo" després per deixar només l'estratègia guanyadora. Fent-ho veurem que amb aquests nombres pot guanyar sempre el primer jugador (A) ja que pot assegurar-se arribar a 3 o a 13 i, a partir d'aquí, aplicar el que hem vist: fer la jugada contrària a l'altre. Les línies vermelles indica que són jugades obligades.


Tornem al joc original

Apliquem el nostre anàlisi al problema original (-2, +53,  de 0 a 2017). El "nombre clau" serà 51 (53-2). El primer nombre guanyador serà 28 (el residu de dividir 2017 entre 51). Aquest nombre ens permet obtenir la resta de la sèrie de nombres guanyadors: 28 - 79 - 130 - 181.... 1915 - 1966. El primer dels jugadors que assoleixi una d'aquestes quantitats (de la forma 51n+28) podrà guanyar la partida. Però quin dels dos la pot aconseguir primer? Com? No sembla que el diagrama en arbre ens pugui ajudar gaire ara. Haurem de canviar l'enfocament.

T'animes a seguir?

28 de març de 2017

Dècimes i centèsimes de Violeta Parra

Hi ha formes poètiques que segueixen patrons específics. Una de les més estudiades des de les matemàtiques són les sextines, una forma d'origen medieval a la qual també es va acollir Joan Brossa en la seva "Sextina de la pau". Podeu descobrir les relacions de la sextina amb les matemàtiques en diferents articles, entre ells el de Josep Bargalló La sextina, mètrica i matemàtica: d’Arnaut Daniel a Joan Brossa o en el de Marta Macho Oulipo. Juegos matemáticos en la literatura.

Una forma més humil i popular és la dècima que, com indica el nom, té deu versos. Aquests són octosíl·labs i amb el següent patró de rima: a-b-b-a-a-c-c-d-d-c. També se l'anomena espinela, pel seu creador Vicente Espinel (segle XVI).

És coneguda la facilitat versificadora de la polifacètica cantautora xilena Violeta Parra (1917-1967). Seves són cançons tan inovidables com Gracias a la vida, Volver a los diecisiete, Mazúrquica modérnica i un llarg etcètera. També va enregistrar, recitades, moltes dècimes. Fins i tot existeix un llibre que les recull: Décimas. Autobiografia en verso en el que diu:

Si escribo esta poesía
no es solo por darme gusto,
más bien por meterle susto
al mal con alevosía;
quiero marcar la partida,
por eso prendo centellas;
que me ayuden las estrellas
con su inmensa claridad
pa’ publicar la verdad
que anda a la sombra en la tierra

Però hi ha una història amb unes dècimes molt especials que l'uniexen, ni que sigui tangencialment, amb les matemàtiques. I de la que no devia estar molt lluny el seu germà, poeta i matemàtic, Nicanor Parra.

La primera part de la història va ser l'enregistrament d'una cançó, 21 son los dolores, amb una lletra de quatre estrofes en forma de dècima. En cadascun dels quaranta versos va comptant des de l'u al quaranta, un nombre per vers: "Una vez que me asediaste, dos juramentos me hiciste, tres lagrimones vertiste, cuatro gemidos sacaste..."


Però la potència versificadora de Violeta Parra era molt superior i es va posar un repte a sí mateixa: arribar fins els 300... o més.

Vols saber-ne més?

21 de març de 2017

El Tangram mínim de Brügner (2)

A l'article anterior vam parlar del cas general del Tangram mínim de Brügner o tri-triangular amb el que es podien fer onze polígons convexos. També vam comentar que si partim d'un quadrat per a la seva construcció la quantitat de polígons convexos es reduïa a cinc.
Cas general del Tangram de Brügner
 Ja vam apuntar que hi havia un altre cas especial i, ho és tant, que ens hem estimat més dedicar-li tota una entrada. En aquest cas especial fem que un dels dos segment en el que queda dividida la diagonal sigui igual a un dels costats.
Tangram mínim especial
De fet, els rectangles amb aquestes proporcions es coneixen com a rectangles de Brügner. El cas és que, amb el tangram construït amb aquestes condicions augmentem la quantitat de polígons convexos que es poden fer. I no només això: hi trobarem interessants relacions de mesura entre els costats dels triangles i entre les seves àrees. El nombre d'or apareixerà de diferents formes. Et proposem diferents problemes:
  • Quants polígons convexes es poden fer?
  • Quina és la relació entre les mesures dels dos segments en que queda dividida la diagonal del rectangle?
  • I entre els costats del rectangle? I la del costat gran amb els altres tres segments que apareixen?
  • En quina proporció creixen les àrees dels tres triangles?


Ho mirem?

15 de març de 2017

El Tangram mínim de Brügner (1)

Existeixen infinitats de tangrams cadascun amb els seus interessos particulars. Entre ells un dels que pot donar molt de joc a les aules és el Tangram mínim o Tri-triangular inventat a l'any 1984 pel matemàtic Georg Brügner. És un tangram format per només tres peces que són triangles rectangles semblants i, en la seva versió general, molt fàcil de construir. Dedicarem un proper article a una versió particular del tangram amb unes mesures concretes. El seu interès no rau només en la poca quantitat de peces i en la seva similitud. Amb amb totes les peces del tangram xinès clàssic es poden construir només 13 polígons convexos, mentre que amb les tres úniques peces del Tri-triangular n'obtenim una quantitat que se li acosta molt.

 
Els 13 polígons convexos del tangram xinès
En primer lloc mirem com és aquest tangram

Com es pot observar només cal traçar la diagonal d'un rectangle i la perpendicular que la uneix a un dels altres vèrtexs.
Les mides del rectangle no influeixen, excepte en dos casos particulars. Ja hem dit que un d'ells serà objecte d'un altre article. Així podem partir d'un rectangle més allargat sense que variï la investigació que proposarem.
La pregunta és: quants polígons convexos es poden fer amb el tangram mínim?

Si els vols veure hauràs de continuar llegint.

13 de desembre de 2016

Si et despistes ets perd un gol (un model estocàstic)

Una de les lectures matemàtiques sorprenents d'aquest 2016 ha estat el llibre de David Sumpter Fútbol y matemáticas (Ed. Ariel). L'autor és un matemàtic anglès que treballa a la Universitat d'Upsala i que dirigeix un grup d'investigació sobre comportament col·lectiu. El que fa interessant el llibre és que s'allunya dels tòpics matemàtico-futbolístics habituals (que també toca, però per sobre) i ens proposa diferents models matemàtics per analitzar altres aspectes com la distribució dels jugadors en el camp, l'estudi dels seus moviments individuals i col·lectius, etc. I, en molts casos, comparant-los amb altres models similars aplicats a la biologia. És difícil adaptar les idees que sorgeixen a l'aula perquè, en molts casos, requereixen l'ús i tractament d'una quantitat ingent de dades. Tot i així algunes sí que poden tenir adaptació com l'anàlisi dels moviments en un petit rondo o el procés d'inici i final d'uns aplaudiments. L'activitat que proposarem a continuació apareix en el primer capítol del llibre "Nunca he predicho nada y nunca lo haré", un divertit i paradoxal títol que té l'origen en una declaració del jugador Paul Gascoigne al 1996.


En aquest capítol Sumpter ens diu. "El que fa que el futbol i altres esports d'equip siguin apassionants és la seva impredictibilitat. Si estàs mirant un partit i apartes la vista durant uns pocs segons, et pots perdre una jugada important i un gol inesperat". Com especialista en models matemàtics ens en proposa un que relaciona clarament estadística i probabilitat.

El vols conèixer?

20 de novembre de 2016

Algoritmes històrics (i no tan històrics) de la resta.

Poc més es pot afegir al tema de l'algoritme de la resta del que han escrit en quatre magnífics articles el David Barba i la Cecilia Calvo al blog del PuntMat. Entre altres coses perquè al blog s'atén més, com hauria de ser,  el problema global de la resta que no el de l'ús d'un algoritme concret. Però un tuit que ha corregut aquests darrers dies i algun algoritme històric guardat al calaix des de fa temps m'ha esperonat a escriure també sobre el tema.

Voldria començar, però, explicant una petita història personal relacionada amb els mètodes per restar. El meu avi era venedor ambulant de ganiveteria. En els períodes de vacances em tocava acompanya-lo pels diferents mercats de Barcelona i la meva feina era tornar els canvis de les vendes. Devia tenir cinc o sis anys i era desesperant haver de fer les restes de cap. Estem parlant de la dècada dels 60 on encara els preus anaven, generalment, a les desenes de cèntim (també hi havia monedes de 5 cèntims).


El meu avi, al veure la meva lentitud operativa, em va salvar la vida explicant-me que el que havia de fer era completar els diners que em donaven  a partir del cost de la venda. Per exemple si la venda era de 17,20 ptes. i em pagaven amb "cinc duros" (25 ptes.), primer anava comptant fins a completar 18 ptes (80 cèntims), després seguia fins a 20 (2 ptes.) i, finalment fins a 25 (un duro, 5 ptes.). Cal dir que no em preocupava del total del canvi. Anava completant i prou. Si hagués volgut saber el resultat de la resta només hauria calgut sumar els "lliuraments" parcials: 0,80+2+5 = 7,80 ptes. És el mètode que vaig continuar utilitzant en les restes "no escolars": anar completant. A l'escola, evidentment, s'havia de fer d'una altra manera. En el fons el mètode de l'avi és un algoritme molt més natural perquè treballa amb quantitats i no amb xifres. Una de les grans limitacions dels algoritmes estàndard per ajudar a desenvolupar el sentit numèric dels alumnes és que, fent treballar xifra a xifra, ens fan perdre de vista els nombres, las quantitats amb les que operem. Més tard he sabut que l'algoritme escrit històric conegut com "austríac", que apareix explicat com a algoritme escrit a la Logistica quae et arithmetica de Jean Buteo, un llibre del 1559, era més proper al mètode de l'avi que a l'escolar.

Tornem al tuit esmentat abans, autoria de @MarcChubb3, autor del blog Thinking mathematically. En ell es veia una sorprenent resta.

Immediatament apareixen algunes peguntes:
  • Com s'ha fet la resta?
  • Funciona sempre?
  • Com es pot justificar el mètode?
  • Com es pot generalitzar a restes de més de dues xifres?
A continuació expliquem aquesta resta i mostrarem també alguns algoritmes històrics. Entre ells un que elimina "del tot" el problema de la "resta portant"

24 d’octubre de 2016

L'atzar té patrons?

El proper 30 de novembre estem convidats per l'ICFO (Institu de Ciències Fotòniques) a participar en un experiment quàntic: el Big Bell Test. Per col·laborar només ens demanen que enviem una seqüència aleatòria de 100 bits d'uns i zeros i, a partir de les 30 000 seqüències que necessiten,es faran els experiments. Aquestes seqüències les podem escriure directament o introduir-les mitjançant un joc interactiu que ens va orientant sobre si hem estat "prou aleatoris" o no. Podeu obtenir més informació sobre l'experiment en aquest tres enllaços: The Big Bell Test (còmic explicatiu, joc, etc...), La cuántica te necesita (l'experiment explicat al web Cuentos cuánticos) o mirant aquests vídeos. També teniu aquest altre enllaç amb activitats per a centres de secundària.

En tot cas, anem a la part matemàtica: què significa "prou aleatori"? Imaginem per un moment que hem encarregat una feina a l'aula: tirar una moneda 20 vegades seguides i que ens anotin els resultats. Continuem imaginant i suposem que, entre d'altres, hem rebut aquestes quatre respostes:

Sèrie A
CCCCCCCCCCXXXXXXXXXX

Sèrie B
XCXCXCXCXCXCXCXCXCXC

Sèrie C
CCXCXCXCCXCXXCXCXCCXX

Sèrie D
CXCCCXCXXCCCCXCXCCXC

Hi ha dues sèries clarament sospitoses d'haver estat inventades: l'A i la B. Per què? Perquè tenen un patró que sembla poc atzarós. Totes dues tenen un 50% de cares i un 50% de creus, però que surtin primer totes les cares i després totes les creus o que facin una seqüència tan purament alternada sembla poc natural.


Les sèries C i D fan millor pinta. Tot i així, ja ho diem, la sèrie C és inventada. No només perquè quadri perfectament amb 10 cares i 10 creus. Una altra cosa que la fa sospitosa és que les ratxes siguin sempre tan curtes, que no hi hagi mai tres cares seguides o tres creus. Hi ha, aproximadament un 50% de probabilitats de que fent 20 tirades seguides obtinguem, com a mínim una vegada, tres cares o tres creus seguides. I una mica menys del 20% d'obtenir una ratxa de quatre tirades iguals.

Hi ha una paradoxa aparent. Cadascuna de les sèries concretes que hem dit té la mateixa probabilitat de sortir:


Però podem veure clarament que, entre aquest milió i escaig de combinacions, només tenim dues sèries de 10 signes seguits (una de 10 cares i 10 creus i una altra de 10 creus i 10 cares) i dues més de dos signes alternats (cara-creu-cara-creu... o bé creu-cara-creu-cara...). En canvi no és difícil pensar que, entre aquest milió, moltíssimes tindran alguna vegada tres cares o tres creus seguides.

És possible ponderar l'atzar? Podem distingir sèries "falses" de "certes"?

18 de setembre de 2016

Delimitant el terreny per fer les cases a Moçambic

Al n. 6 de la revista UNO (1995) Alan J. Bishop escrivia :
"Sovint, una dada antropològica concreta pot ser usada per crear activitats matemàtiques molt interessants en les lliçons de l'escola i ser demostrades i discutides en els cursos de formació de professors. Per exemple, Gerdes informa (1988) que a Moçambic certs constructors rurals utilitzen quatre trossos de corda units per formar un rectangle configurant d'aquesta manera la figura de la casa. Les quatre peces tenen la mateixa longitud i es lliguen com a la figura."


Per poc que es miri es pot observar que, efectivament, aquesta situació ens proporciona un context que obre tot un ventall de possibilitats, moltes apuntades pel mateix Bishop al seu article. Recuperem-ne algunes i afegim-ne d'altres. Moltes d'elles es poden realitzar tant a Primària com a Secundària.

29 de novembre de 2015

Heptatrisecció de l'angle

A l'antiga Grècia, per resoldre els problemes geomètrics, es van autoimposar un regles de joc. De la mateixa manera que quan juguem a futbol, si no som porters, ens autoimposem no tocar la pilota amb els braços encara que ho puguem fer amb qualsevol altra part del cos, les regles gregues per a la resolució de problemes es referien a les eines a utilitzar: només rectes i circumferències, o, dit d'una altra manera, amb regle sense graduar i compàs col·lapsable (un compàs que es tanca quan el separes del paper). Van resoldre molts problemes, però hi ha tres que van passar a la història perquè no en van trobar la solució:
  • la quadratura del cercle (construir un quadrat d'àrea equivalent a un cercle donat).
  • la duplicació del cub (trobar l'aresta del cub de volum doble a un altre donat).
  • la trisecció de l'angle. 
Segles més tard es va demostrar que cap dels tres problemes era resoluble amb aquestes regles de joc. Potser del que menys es parla és el de la trisecció de l'angle i, per aquest motiu, li dedicarem aquest article.

Una dels teoremes més bonics relacionats amb la trisecció de l'angle és el teorema de Morley. Aquest teorema diu que els punts d'intersecció entre les trisectrius dels angles d'un triangle qualsevol formen un triangle equilàter. Pots provar-ho amb aquest applet.


És evident que hi ha angles concrets, com el de 90º, que es poden trisecar amb regles i compàs. Us convidem a fer-ho amb GeoGebra.

Però la impossibilitat de la resolució del problema general, per a qualsevol angle, va ser demostrada per  Pierre Wantzel al 1837. Si bé a l'antiga Grècia no van saber resoldre el problema amb regle i compàs de forma exacta, sí que ho van saber fer amb altres eines. Per exemple amb un regle amb un parell de marques o amb regle, compàs i algunes corbes especials com l'espiral d'Arquímedes, la quadratriu d'Hipies o la concoide de Nicomedes. Són solucions molt boniques que es poden mostrar i treballar a l'aula. Recordem que la cultura matemàtica, i en concret el coneixement de la seva història, han de ser part important del bagatge dels nostres alumnes.

Espiral d'Arquimedes
Quadratiu (o trisectriu) d'Hipies
Concoide de Nicomedes

També mostrarem un trio d'artefactes mecànics que trisequen l'angle: els trisectors de Ceva, Laisant i Kempe.

Pantògraf de Ceva
Trisector de Laisant
Trisector de Kempe

Ens hi posem?