A l'article anterior (Ossos i geometries no euclidianes-1) vam plantejar un conegut problema amb un enunciat semblant a aquest:
Un os camina un quilòmetre cap al sud seguint un meridià. Gira cap a l'oest i camina un altre quilòmetre seguint un paral·lel. Gira cap al nord i camina un altre quilòmetre seguint un meridià. Al final es troba al punt de partida. De quin color és l'os?
Vam veure que hi havia dos tipus de solucions. Un model amb infinites solucions a l'hemisferi sud del nostre planeta i un altre de més evident a l'hemisferi nord: el punt de sortida i arribada seria el Pol Nord. Vam observar al Pol es formava un triangle amb una suma d'angles interiors de més de 180º. Això no és possible al pla però sí a una superfície esfèrica. Va ser l'excusa per entrar en el mon de la geometria esfèrica, un dels tipus de geometries no euclidianes. En aquest article canviarem les superfícies sobre les que caminarà el nostre os i serà la porta d'entrada a un altre exemple de geometria no euclidiana: la hiperbòlica.
Imaginem al nostre os caminant sobre un paraboloide hisperbòlic. Aquesta superfície la podem trobar en les patates Pringles o, més sanament, en una superfície reglada com la que mostren al MMACA per a il·lustrar la multiplicació d'enters en 3D. Observarem que el recorregut de l'os és impossible perquè, deixant de banda la definició exacta de nord i sud, els meridians van sent divergents a mesura que es van separant del que podríem considerar com a zona equatorial.
Proposem el problema a una nova superfície: una pseudoesfera o tractricoide. Aquesta superfície, com l'anterior és infinita. És a dir, les "puntes" no acaben convergint sinó que són asimptòtiques. A l'hemisferi sud tenim, com a l'esfera, infinites solucions. Però al nord no en tenim cap perquè els meridians no convergeixen mai, només es van acostant cada vegada més.
![]() |
Pseudoesfera i ruta en detall |
Les dues superfícies presentades son molt interessants en sí mateixes. Però no ens toca estudiar-les ara. Les hem triat perquè son dos dels models físics de la geometria hiperbòlica, una geometria que tampoc acompleix el 5è postulat d'Euclides, però de forma diferent a les que havíem vist: al pla dèiem que "per un punt extern a una recta només passa una paral·lela a aquesta", i a l'esfera que "per un punt exterior a una "recta esfèrica" no passa cap paral·lela a aquesta". A la geometria hiperbòlica diem que:
Per un punt exterior a una recta hiperbòlica passen, com a mínim, dues rectes que són paral·leles a aquesta.
L'expressió "com a mínim dues", implica que poden ser infinites.
Com vam fer a l'article anterior haurem de redefinir algunes coses com "recta", "angle", "distància", "triangle"... i, a partir d'aquestes redefinicions, veure com podem conduir un debat a l'aula sobre aspectes com la relació amb els postulats euclidians,la suma dels angles interiors d'un triangle, com es calcula la seva àrea, com són les circumferències... No es tracta de fer un estudi a fons sinó de fer un primer contacte, d'aproximar-se a algunes idees generals. I tot amb dues raons de fons:
- comprendre millor el sistema axiomàtic de les matemàtiques. I, en concret, millorar la comprensió del proposat per Euclides fent una mena "d'estranyament", a base de modificar les seves regles i "moure'ns" en un món diferent.
- aproximar-nos a la revolució matemàtica que va suposar l'aparició de les geometries no euclidianes.
Aquesta geometria és més difícil d'estudiar amb materials. Podem imprimir algunes superfícies en 3D, però tampoc ens solucionarà gaire cosa, perquè és complex tot el que es relaciona amb la mesura. Aquí teniu un enllaç per a imprimir un paraboloide hiperbòlic i una pseudoesfera.
Hi ha alguns models plans de la geometria hiperbòlica. Per exemple, el model del Disc de Beltrami-Klien on el pla infinit es representa amb l'interior d'un cercle (la circumferència que el limita no en forma part) i les rectes per cordes d'aquesta circumferència. No entrem ara en el tema de les distàncies. La imatge mostra algunes de les moltes paral·leles a la recta a que passen pel punt P. Les que coincideixen amb la recta a no la tallen perquè, com hem dit abans, la circumferència no forma part del disc.
![]() |
Límit circular III de M.C Escher (1959). Aquesta obra està basada en el disc de Poincaré |