13 de maig de 2023

Intuïció i probabilitat: el joc de "la canyeta més curta"

Que la intuïció i la probabilitat estan renyides és un tema que, recurrentment, s'ha tractat en aquest blog. També podeu veure, sobre aquest tema, el vídeo de la comunicació Què passarà? Intuïció i probabilitat, de la Jornada d'Educació 2021 de l'APMCM. De vegades, la manca d'intuïció està relacionada amb la poca familiaritat o experiència amb les situacions plantejades. Avui aquesta proposta ens convida a pensar sobre una situació ben coneguda, el mètode de tria de "la canyeta més curta". El joc funciona així:

  • Tenim un grapat de canyetes (o de cordills, o d'herbes, o pals de gelat...). Tantes com persones intervenen el joc. Les canyetes poden tenir diferents longituds o ser iguals totes, menys una que serà més curta.
  • Qui organitza el joc les agafa barrejades amb la mà de forma que, per la part superior, es mostri per a totes una longitud igual. La part inferior acostuma a quedar amagada, però si són, per exemple, cordes desiguals no és estrictament necessari.
  • Els jugadors agafen ordenadament una canyeta cadascun.
  • Perd (o s'elimina) qui ha triat la més curta.

La qüestió a discutir és: importa l'ordre en triar o és indiferent? Afecta quin torn tens per agafar la canyeta a la probabilitat que agafis la més curta?

Podem imaginar una discussió a l'aula, sigui de primària o secundària, en la que sortiran arguments com aquests:
  • És millor ser l'últim perquè així és més probable que una altra persona l'hagi agafat abans.
  • És millor ser dels primers perquè tens més canyetes per a triar. Si et vas esperant cada vegada en queden menys i la probabilitat de triar la curta augmenta.
  • És millor ser dels del mig per si algú l'agafa abans, però sense esperar que quedin poquetes.
Podeu provar també de treure el tema en ambients no matemàtics per veure què en pensa la gent.

Com sempre, el millor és començar experimentant una mica. A continuació teniu un applet fet amb Snap que us permetrà jugar-hi. Aquí l'hem preparat amb un joc de fitxes que tenen una cara visible de color marró i una amagada: totes són verdes menys una que és vermella i que és la que fa perdre.

Estudiem el joc?

10 d’abril de 2023

"Quaternes" i altres patrons a la taula de multiplicar

De vegades hi ha patrons relativament senzills que, pel que sigui, no se t'acudeix buscar. La clau, com sempre, està en saber-se fer preguntes. Aquests patrons que presentem avui, en els què fins ara no m'hi havia fixat mai, els he trobat al llibre La matemática elgante (A.V. Zhúkov, P.I Samavol i M.V. Applebaum; Editorial URSS). Tots es basen en la taula pitagòrica de la multiplicació. I millor si la taula és "infinita". Els primers es basaran en la tria de quatre nombres que formin un quadrat seobre la taula. Després hi ha dos més basats en l'estudi de les sumes dels nombres que formen angles rectes i algunes diagonals. Abans d'entrar-hi és obligatori recordar un article, també referent a aquest tema, del Blog del PuntMat: "Patrons a les taules de multiplicar". Comencem.

  • Quadrats amb els costats paral·lels a les vores de la taula
Triem quatre nombres que siguin els vèrtexs d'un quadrat col·locat "horitzontalment", que tingui els costats paral·lels als costats de la taula.


Podem descobrir una relació entre dues de les parelles de vèrtexs de cada quadrat. Quina és?
  • Quadrats com els anteriors que tenen dos vèrtexs sobre la diagonal principal
A més de la relació anterior, en aquest cas, hi ha una propietat numèrica especial que s'acompleix considerant els quatre vèrtexs.

  • Quadrats amb els costats paral·lels a les diagonals principals
Un cas relativament semblant al primer. Hem de trobar una relació entre dues parelles de vèrtexs.

  • Suma dels nombres dels angles rectes de la taula (gnòmons)
Si sumem els nombres que formen els gnòmons de la taula (podríem visualitzar-los com lletres L invertides), quin tipus de nombres obtenim?


  • Suma dels nombres de les diagonals consecutives
Aquesta relació és una mica més complicada. Si sumem els nombres situats en les diagonals consecutives, marcades a la figura, podem trobar una sèrie numèrica curiosa. Podeu endevinar com segueix o identificar-la?


Us animeu a continuar investigant aquests patrons?

27 de març de 2023

Sextines i nombres de Queneuau

Sovint, encara que sembli contradictori, posar restriccions estimula la creativitat. Pensem, per exemple, en els grans descobriments de la geometria grega nascuts de la restricció de l'ús exclusiu del regle i el compàs. I, en un terreny ben diferent, en la imaginació posada en cinema, escriptura o música per esquiva la fèrria censura durant l'època franquista o de la primera transició. En aquest article parlarem d'una forma de poesia, basada en un joc combinatori i que, convenientment adaptat, ens pot servir per a preparar alguna activitat a l'aula que connectin llengua i matemàtiques. Ens pot servir, per exemple, per a una proposta per a Sant Jordi. La forma de poema més convencional, dels poemes que estudiarem. és la sextina, però que podrem convertir, en tercina, cinquina... o el que ens convingui.

  • La sextina
Segons moltes fonts, l'inventor de la sextina és el trobador occità del segleXII Arnaut Daniel. Aquesta forma poètica ha arribat fins als nostres dies perquè l'han adoptat altres poetes antics, com Dante, PetrarcaCamões o Fernando de Herrera, i més recents com Kipling, Ezra PoundGil de Biedma... A Catalunya s'hi van dedicar, especialment, Joan Brossa i Maria Mercè Marçal, que van escriure llibres sencers amb aquesta forma.


Una sextina estricta és un poema de 36 o 39 versos i, normalment, d'onze síl·labes. Els 36 primers versos s'organitzen en sis estrofes de sis versos cadascuna. Opcionalment, es pot afegir una tornada de tres versos finals (que farien els 39). L'interès matemàtic està les regles combinatòries que s'utilitzen en la seva construcció.

Mirem un exemple: La primera estrofa de la Sextina reivindicativa, de Maria Mercè Marçal ("Terra de mai" dins de "La germana, l'estrangera"), on marquem en negreta les paraules que seran la clau del poema: les "paraules-rima":

Amor, ja que m'has dit que et digui què
vull, t'ho diré ben clar: contra l'horari,
el meu desig reivindica el lleure
total, i tu i el teu desig per paga,
pujar parets d'amor pet tot ofici
i pintar de diumenge la setmana.

Aquestes paraules-rima tornen a aparèixer a la segona estrofa, però en un altre ordre:

Ja ho sé! Tot no pot ser caps de setmana
 i postes de sol. Sí, ja ho sé. I què!
 Deixa'm clamar, adolescent d'ofici,
 per la mort violenta de l'horari
 per mà d'amor. El meu desig, cap paga
 no vol, si posa duanes al lleure.

A la resta d'estrofes tornaran a repetir-se, però de forma que no cauran mai al mateix vers. Per exemple, lleure la trobem al 3r vers, a la 1a estrofa, i al 6è, a la segona. En les següents estrofes sortirà en el 1r, el 2n, el 4t i el 5è vers.

El poema es tanca amb una tornada en què les paraules-rima s'ordenen com a la primera estrofa, posant-ne dos per vers.

amor, per què ens escapça el vol l'horari,
 confina el lleure i, per ben poca paga,
 amo d'ofici, ens roba la setmana?

Podeu llegir tota la sextina, i tres més, en aquest enllaç.

L'esquema general de distribució de les paraules-rima és la següent:

Estrofa            
1a 1 2 3 4 5 6
2a 6 1 5 2 4 3
3a 3 6 4 1 2 5
4a 5 3 2 6 1 4
5a 4 5 1 3 6 2
6a 2 4 6 5 3 1

 Podem observar un perfecte quadrat llatí, en què no es repeteix cap paraula a cap fila ni a cap columna.

Hem aplicat a les paraules-rima un mètode de permutació que fa que cada mot vagi a parar a un vers diferent cada vegada. Però, si l'estudiem, veurem, a més, que per la seva forma de construcció, en una permutació més tornaria a l'ordre original. Podem descriure cada permutació com llegir les paraules-rima ordenadament sobre una espiral. La següent animació ens permet veure el model de permutació.


És l'única forma de permutació que, en un cicle de sis moviments, les sis paraules tornen a quedar com al principi? Evidentment que no. Però l'estètica d'aquesta, basada en els desplaçaments sobre una espiral, és prou interessant. Per exemple, ens podem demanar si hi ha altres nombres, a banda del 6, amb n elements i que en n permutacions completi un cicle que el deixi com al principi?

Ho estudiem?

19 de febrer de 2023

"Assagem" amb el rugbi

Si hem vist retransmissions de partits de futbol, més d'una vegada haurem sentit a la locució que el davanter, o davantera, "ha perdut angle". Bé, l'angle de tir a la porteria no es pot perdre, sempre hi és. Però sí que es pot anar reduint. En general, quan més ens allunyem de la vertical de la porteria menor és aquest angle de tir: l'angle format per la pilota i els dos pals de la porteria. També s'utilitza l'expressió quan el jugador/a s'acosta massa, per un costat de la porteria, a la línia de fons. Tot i que, en aquest cas, l'angle també es perd quan t'allunyes massa d'aquesta.


Però també hi ha tot un arc, conegut com a arc capaç, sobre el que ens podem moure mantenint sempre el mateix angle de tir. El centre d'aquest arc està situat en la mediatriu del segment format pels dos pals de la porteria. El seu radi pot variar: a cada radi correspon un angle diferent. La mida d'aquest l'angle dependrà de la proximitat del centre de la circumferència al "segment porteria". Com més a prop, més gran.

L'estudi de l'angle de tir, en el cas del futbol, no és del tot interessant perquè les situacions de joc són les que són. No es pot triar gaire des d'on tirar; ni tan sols en les faltes. Però el rugbi sí que té una jugada especial, la "transformació" que compta amb un marge de tria. Posem-nos en situació amb aquesta jugada.

La situació en les que un equip obté més punts és amb l'assaig: 5 punts. Un assaig s'aconsegueix quan un jugador/a travessa la línia de fons de l'equip contrari i planta la pilota a terra. Un cop fet l'assaig el mateix equip pot aconseguir dos punts extres si realitza una transformació. Per fer-la un dels jugadors/es de l'equip que ha fet l'assaig posa la pilota en el lloc que triï sobre la vertical del punt d'assaig. A aquesta perpendicular l'anomenarem, a partir d'ara, línia o recta de transformació. Llavors, xuta la pilota per fer-la passar entre tres pals: per sobre de l'horitzontal i entre els dos verticals.

En aquest estudi prescindirem de l'alçada i mirarem només l'angle de tir. I en el cas particular que la línia de transformació no estigui entre els pals. Podem experimentar amb aquesta la construcció feta amb GeoGebra i anar movent el punt de tir sobre la perpendicular al lloc d'assaig. Observarem que l'angle varia, però hi ha un lloc òptim, on l'angle és el més gran possible per a aquella recta.
Enllaç a la construcció interactiva


Un cop plantejada la situació venen les preguntes:
  • Com podem localitzar geomètricament aquest punt d'angle màxim?
  • Si anem movent la recta de transformació, quina línia tracen els diferents punts d'angle màxim?
Ho estudiem?

17 de desembre de 2022

El problema del testament del Nabab i la "resolució per síntesi"

 Al llibre Problemas aritméticos escolares, de Luis Puig i Fernando Cerdán (1988), es proposen dos mètodes de resolució de problemes que podem utilitzar amb força efectivitat en molts d'aquells, més o menys, "escolarment tradicionals".

  • Mètode d'anàlisi: partir de la pregunta i retrocedir cap a les dades (quines dades em calen per contestar la pregunta? Les tinc? Si no les tinc que em cal per descobrir-les?...).
  • Metode de síntesi: partir de les dades i avançar cap a la pregunta (què puc saber amb les dades que tinc? És el que em demanen? Si no és així, què podria esbrinar amb el que tinc?...)
Al llibre s'incorporen dos esquemes que il·lustren clarament els dos mètodes.

Mètode d'anàlisi: de la incògnita a les dades

Mètode de síntesi: de les dades a la incògnita

Habitualment, tenim més tendència a pensar d'una manera o de l'altra. És clar que en problemes d'investigació, dels que acostumem (o ens hauríem d'acostumar) a proposar l'aula, aquest esquema és massa rígid. Però, com he comentat, en problemes més tradicionals, tipus "llibre de text", ens poden ser útils. Si més no, per poder pensar preguntes orientadores per a fer al nostre alumnat.

No entrarem ara a posar exemples de resolució d'un mateix problema per cada mètode. Però sí que comentarem un curiós repte que Édouard Lucas planteja al llibre L’arithmétique amusante (1895) i que també trobem al 4t volum de les seves Récréations mathématiques. Aquest problema, com veurem, s'ajusta molt bé a una resolució pel mètode de síntesi.

"El testament del Nabab. Un nabab deixa als seus fills un certa quantitat de diamants d'igual valor, en les següents condicions: El primer agafa un diamant i 1/7 dels que queden; el segon agafa dos diamants i 1/7 dels que queden; el tercer agafa tres diamants i 1/7 del que queda, i així successivament. Després del repartiment de tots els diamants, totes les parts obtingudes són iguals. Es demana la quantitat de diamants i la de fills"


 Al llarg de l'article, tot evitant inicialment un platenjament algebraic, comentarem la resolució aritmètica per síntesi. Però també estudiarem la seva generalització per a diferents particions (en terços, quarts, etc.) i descobrirem una connexió una mica inesperada. A més, mostrarem la resolució que proposa Lucas i una d'algebraica.

Però, abans d'entrar en matèria, cal esmentar que Lucas subtitula el repte com "Un problema d'aritmètica índia" i, fins i tot, relaciona la seva resolució amb mètodes proposats pel matemàtic indi, del segle V, Aryabhata. No sabem si és cert o no. En tot cas, els problemes de repartiments, i entre ells els d'herències, són un clàssic en els llibres matemàtics antics.

Comencem a resoldre el problema?

27 de setembre de 2022

La tauleta babilònica IM 67118: geometria, àlgebra i una mica de "pensament computacional"

L'objectiu d'aquest article és donar a conéixer un problema de geometria que apareix a la tauleta babilònica IM 6178. Aquesta tauleta es conserva al Museu Nacional d'Iraq de Bagdad i es va trobar al jaciment de Tell edh-Dhiba'i . Se li calculen uns de 3800 anys d'antiguitat.


Imatge de l'anvers de la tauleta (Font: Viquipèdia)

El problema que es planteja i resol és el següent:

Trobar la longitud i l'amplada d'un rectangle donades la seva àrea (0,75) i la diagonal (1,25).

No cal dir que la redacció original no és estrictament així, ni que les mesures, a la tauleta original, estan donades en numeració sexagesimal. 

Al revers de la tauleta (on continua el text de l'anvers) hi ha un esquema del problema amb les dades.

Revers de la tauleta i esquema ampliat

Un aspecte que dona què pensar és la semblança d'estil i contingut amb molts dels problemes que apareixen tradicionalment als llibres de text actuals. Podríem obrir tot un debat sobre aquesta qüestió. Però també ens podem demanar per què pot ser interessant treballar aquest problema a l'aula. Entre d'altres, hi ha tres raons a considerar:

  • perquè ens permet treballar aspectes d'història de les matemàtiques: quina mena de problemes es plantejaven a l'antiga Mesopotàmia? Com els resolien? Quines matemàtiques es coneixien? Com les representaven? Com les explicaven?...
  • perquè la resolució actual i la babilònica són força diferents i ens permetrà fer descobertes i connexions riques entre àlgebra i geometria. Fins i tot, descobrir aspectes sorprenents en una reinterpretació geomètrica de les expressions (a+b)2 i  (a-b)2.
  • perquè si entenem que l'últim convidat curricular, el pensament computacional, està directament relacionat, en un sentit general, amb l'algorítmia, podem fer un estudi interpretatiu, des d'aquest enfocament, de l'algoritme de resolució proposat a la tauleta.

Però tornem ara al problema. Mirem primer la resolució moderna.

  • Resolució amb un sistema d'equacions
No és molt difícil de plantejar: una primera equació que relacionarà la diagonal amb els costats, emprant el teorema de Pitàgores, i una segona equació a partir del càlcul de l'àrea.

  • El mètode babilònic
El text original de la tauleta el podeu trobar en aquest enllaç a la Viquipèdia. Aquí seguirem la trducció més alleugerida que apareix al llibre La cresta del pavo real de G. Gheverghese. A la següent taula tenim les instruccions que s'hi donen, pas a pas, amb els càlculs associats en el nostre sistema decimal.


Tant a les tauletes mesopotàmiques com als papirs egipcis, s'acostumen a plantejar els problemes i, a continuació, s'expliquen, sense cap mena de justificació, les passes per a resoldre'ls. Si prescindim de les dades concretes que se'ns donen, el que ens proporcionen és un algoritme per a resoldre altres problemes idèntics. Només haurem de canviar les dades d'entrada i seguir les mateixes indicacions operatives. Però una cosa que podem començar a intuir, només mirant la taula, és que l'algoritme de resolució de la tauleta no sembla tenir una relació molt directa amb les passes de resolució del nostre sistema d'equacions anterior. Què feien i per què?

T'animes a analitzar l'algoritme de la taulera IM 67118?

14 de maig de 2022

Passar de 6 i rectificació de passar de 12

Abans de llegir aquest article, i si no voleu tenir espòilers , és millor que llegiu una entrada anterior relacionada: Passar de 12. Si ja coneixeu l'activitat, o us és diferent que s'esguerrin algunes sorpreses, podeu continuar. En tot cas, i per situar, recordem breument com era l'activitat Passar de 12.

  • Agafem un dau
  • L'anem tirant i sumant les puntuacions.
  • Ens aturem quan arribem a una suma superior a 12. (Atenció! 12 no val! Ha de ser superior: 13, 14, 15...)
Exemple de tirades que s'aturen a 16

La pregunta de l'activitat era demanar per quin nombre apostaríem com a resultat final. Si fem l'experiment a l'aula veurem que la majoria d'apostes estan entre el 14 i el 16. Però, i d'aquí ve la sorpresa de l'activitat, el resultat més probable és 13. La raó que donàvem, en el seu moment, era que a 13 podem arribar des de sis resultats anteriors, des de 7, 8, 9, 10, 11 o 12, traient amb el dau un 6, un 5, un 4, un 3, un 2 o un 1, respectivament. A 14 arribarem des de cinc resultats. A 13 des de quatre... I així fins al darrer resultat possible, 18, al que només podem arribar d'una manera: des de 12 i traient un sis. Presentàvem la següent taula per a justificar el raonament.


Aquests resultats es corresponen força bé amb els que es poden obtenir amb un applet fet amb scratch que ens permet experimentar tantes vegades com vulguem.

Resultats d'un milió d'experiments amb l'applet

Fins aquí el que teníem. Però tot va trontollar quan la Cecilia Calvo, "la de l'ull precís", em va enviar un missatge que va posar en dubte l'explicació donada. Tot venia d'una adaptació del joc que va preparar per a fer-lo més analitzable a l'aula: Passar de 6. En aquest cas es pot fer un anàlisi més exhaustiu de totes les possibilitats. És a dir, mirar exactament de quantes maneres diferents puc arribar a un resultat concret..

Si apliquem el raonament presentat originalment a l'activitat Passar de 12, ara només hauríem de fer una petita adaptació de valors de la taula justificativa, però arribaríem als mateixos resultats que amb el 12.

Però si fem la mirada que proposa la Cecília, cercar exhaustivament tots els casos, els resultats als que s'arriben són diferents.


Així que vaig rebre el missatge de la Cecilia vaig recordar una famosa cita d'un dels pares del càlcul de probabilitats, Pierre-Simon Laplace, que al seu Essai philosophique sur les probabilités escrivia:

“La teoria de probabilitats va unida a consideracions delicades i no és estrany que, partint de les mateixes dades, dues persones arribin a resultats diferents.”

La prova del cotó de que, com no, el raonament de la Cecilia era el correcte, ens la dona l'experimentació amb un nou applet Passar de 6

Resultats d'un milió d'experiments amb l'applet

Aquesta nova mirada posava en dubte els resultats previstos per al joc Passar de 12, tot i que l'experimentació els corroborava.

Ho mirem tots amb calma de nou? Revisem l'estudi del joc? Apliquem l'anàlisi de la Cecilia al cas de 12 i altres casos nous?

Us animeu a continuar?

30 de març de 2022

Estudiem una fórmula egípcia per a l'àrea dels quadrilàters

 Al 1855, Karl Richard Lepsius va publicar un estudi sobre les inscripcions jeroglífiques del Temple d'Horus que es troba a Edfú.

Al 1821 el matemàtic Thomas Little Heath escrivia, a la seva història de les matemàtiques gregues, aquesta frase a partir del treball de Lepsius.

"De moltes d'aquestes inscripcions que van ser publicades per Lepsius en recollim que 1/2(a+c)·1/2(b+d) era una fórmula per a l'àrea d'un quadrilàter els costats dels quals són, per ordre, a, b, c, d."

Dit d'una altra manera, l'àrea d'un quadrilàter es calculava trobant la d'un rectangle que tenia per costats la mitjana dels costats oposats.

A partir d'aquesta informació ens podem fer algunes preguntes:
  • Funciona sempre bé aquesta fórmula?
  • Si no és així, quan funciona?
  • Si no funciona, l'error és molt gran? Molt petit? De què depèn?
Podem estudiar aquest tema, en el què GeoGebra ens serà de gran utilitat, gradualment: paral·lelograms, estels, trapezis isòsceles i quadrilàters generals. I, pel camí, anirem definint algunes de les condicions per a que aquests quadrilàters quedin determinats. Això ens permetrà també fer algun petit estudi funcional. És a dir, podem trobar una línia de treball que pot abastar del Cicle Superior de Primària al final de l'ESO. Acabarem l'article amb una adaptació, també trobada al mateix temple, per a l'àrea dels triangles.

Però, per "fer boca", podem veure ràpidament que la "fórmula egípcia" no funciona. Només cal observar un exemple, que bé ens podria servir pels nivells més baixos: els rombes. Aquestes figures queden determinades només amb un costat i un angle. Quan l'angle és de 90º tenim el quadrat. Justament el mètode egipci, i tenint en compte que en el rombe els costats són iguals, fa que l'àrea de qualsevol rombe sigui "igual" a la del quadrat amb el mateix costat, cosa evidentment falsa.

L'àrea d'un rombe de costat 5 pot prendre valors de 0 (0º) a 25 (90º)

Un dels aspectes més curiosos d'aquesta fórmula és que està datada aproximadament en el segle I a.n.e, quan Euclides, al mateix Egipte, però més al nord, havia publicat ja el seus Elements.

Estudiem el la "fórmula egípcia" amb més detall?

15 de març de 2022

Corones. D'un problema a un teorema

En aquest article seguiré un itinerari, pràcticament clavat, al que ens van presentar en una xerrada, i si la memòria no em falla, els il·lustres membres del MMACA, Josep Rey i Manel Udina. Van connectar dos problemes que coneixia de manera independent i que no se m'havia acudir mai relacionar. El problema inicial, que no era exactament el mateix que ells van plantejar, el recordo del llibre de Mariano Mataix "Cajón de sastre matemático" (1981). El problema, més o menys, deia així:

"Suposem que tenim dues circumferències concèntriques. Tracem una tangent a la interior que tallarà l'exterior en un punt. La distància entre aquest punt i el de tangència és d'un metre. Troba la superfície de la corona circular que formen les dues circumferències."



Sembla increïble però el problema es pot resoldre tot i disposar només d'una informació tan mínima. Això si, cal l'ajuda "d'una idea feliç". Com a pista només cal recordar que la fórmula de l'àrea de la corona és π(R2-r2) i que aquesta expressió, R2-r2, ens pot recordar com calcular un catet d'un triangle rectangle utilitzant el teorema de Pitàgores. Un cop resolguem aquest problema veurem que té altres sorpreses amagades i l'anirem ampliant fins a relacionar-lo amb un dels teoremes més bonics i sorprenents: el de Holditch. Aquest teorema el vaig veure per primera vegada en el preciós llibre de Clifford A. Pickover El libro de las matemáticas. Ja explicarem més tard què proposa. Només apuntarem que té a veure amb àrees de corones i escuradents, amb un punt marcat, que es mouen per la vora de figures corbes. Tot i així, qui me'l va redescobrir va ser el web de Gaussianos en un magnífic article que referenciaré al final.

Font de la imatge

Us animeu a continuar llegint?

6 de febrer de 2022

Còniques a la badia de Roses

Fa molts anys em va caure a les mans un text de Josep Pla titulat "El vent de garbí i la tramuntana". Un dels seus apartats es titulava Explicacions científiques. En ell, per primera vegada, vaig trobar la referència a les formes el·líptiques de la badia de Roses. En Pla comenta un escrit de Frederic Macau (1917-1970) on hi ha tot l'estudi matemàtic pertinent, les seves justificacions geològiques i climàtiques i un petit teorema que ell mateix anomena "Teorema de l'Empordà"

En el text de Pla es diu:

És absolutament obvi que el perfil del golf de Roses és la forma més admirable, més impressionant, d'una més excelsa bellesa, més inoblidable de l'Empordà. (../..) És una forma de gran bellesa, produïda per la naturalesa en cru, que mai, potser, l'obsessió artística no arribarà a dibuixar una forma que s'hi assembli. (../..) El senyor Macau se l'ha mirada amb ulls d'artista i de científic -n'ha donat una informació de gran categoria. Una visió superficial del golf fa aparèixer una forma el·líptica geomètricament perfecta. És una el·lipse com si hagués estat traçada amb un tiralínies per un delineant expertíssim. Però d'el·lipses, n'hi ha dues: una de petita, del cantó de Roses, i una de més llarga del cantó de l'Escala. L'eix de l'el·lipse de la banda de Roses coincideix en direcció i situació amb la perllongació dins del mar de l'últim tram del Muga. L'eix de l'el·lipse de la banda de l'Escala, coincideix, encara que no tan exactament, amb la direcció i la perllongació del penúltim tram del Fluvià".

El text continua donant més detalls matemàtics recollits de l'escrit de Macau on, a més, hi ha alguna referència a la proporció àuria. Si el voleu llegir es titula "L'Alt Empordà geometritzat per la Tramontana".

Imatge original del text de Frederic Macau

La segona vegada que em vaig trobar amb una referència a l'estudi de Macau va ser a l'exposició de Perejaume "Maniobres de Perejaume", a l'any 2014.

La tercera, va ser a la revista NouBiaix, al n. 79, també de 2014, on Lluís Sabater, de l'IES Llança, feia tot un estudi amb GeoGebra de les propostes de Macau. L'article es titulava El Teorema de l'Empordà (de F. Macau) vist amb el GeoGebra.

Enllaç a la construcció de Lluís Sabater

Ja avanço que, amb tots el meu sincer respecte per l'obra de Macau, aquestes coses no me les pren mai del tot seriosament. Per una banda, la natura "no és exacta". Per una altra, nosaltres fem passar les línies per on ens va millor. Quantes vegades hem vist obres que troben tot de proporcions àuries dibuixant rectangles auris amb aproximacions triades a conveniència?

Aquí em deixo un colze, aquí un tros de mà, aquí...

Però l'observació de la forma aproximadament el·líptica de la badia (o de suma dels arcs de dues el·lipses) és innegable. Una altra cosa és de quina o de quines el·lipses. Un dels grans mèrits de Frederic Macau és que ho va fer tot a mà. Nosaltres disposem d'eines molt més còmodes per a posar-nos a jugar: imatges ortogràfiques accessibles, GeoGebra...

Ens hi posem?