Al llibre Problemas aritméticos escolares, de Luis Puig i Fernando Cerdán (1988), es proposen dos mètodes de resolució de problemes que podem utilitzar amb força efectivitat en molts d'aquells, més o menys, "escolarment tradicionals".
- Mètode d'anàlisi: partir de la pregunta i retrocedir cap a les dades (quines dades em calen per contestar la pregunta? Les tinc? Si no les tinc que em cal per descobrir-les?...).
- Metode de síntesi: partir de les dades i avançar cap a la pregunta (què puc saber amb les dades que tinc? És el que em demanen? Si no és així, què podria esbrinar amb el que tinc?...)
![]() |
Mètode d'anàlisi: de la incògnita a les dades |
![]() |
Mètode de síntesi: de les dades a la incògnita |
Habitualment, tenim més tendència a pensar d'una manera o de l'altra. És clar que en problemes d'investigació, dels que acostumem (o ens hauríem d'acostumar) a proposar l'aula, aquest esquema és massa rígid. Però, com he comentat, en problemes més tradicionals, tipus "llibre de text", ens poden ser útils. Si més no, per poder pensar preguntes orientadores per a fer al nostre alumnat.
"El testament del Nabab. Un nabab deixa als seus fills un certa quantitat de diamants d'igual valor, en les següents condicions: El primer agafa un diamant i 1/7 dels que queden; el segon agafa dos diamants i 1/7 dels que queden; el tercer agafa tres diamants i 1/7 del que queda, i així successivament. Després del repartiment de tots els diamants, totes les parts obtingudes són iguals. Es demana la quantitat de diamants i la de fills"