És molt conegut el problema de Les granotes i els gripaus inventat l'any 1982 per Richard Guy. És una activitat que combina joc i investigació i que es pot portar a l'aula des de finals de primària fins a qualsevol curs de l'ESO. Ja fa molts anys que la vam incorporar al web del Calaix +ie. El joc inicial es juga sobre un tauler de set caselles amb tres fitxes d'un color (les granotes) i altres tres d'un altre color (els gripaus) . L'objectiu és intercanviar les fitxes de posició tenint en compte que només poden avançar, cada color en un sentit, desplaçant-se a una casella immediata buida o saltant per sobre d'una fitxa d'un altre color si la casella següent està lliure, com al joc de dames. La investigació posterior es fa per a estudiar els moviments mínims necessaris per a itercanviar m granotes i n gripaus.
"Les sis granotes instruïdes de la il·lustració estan entrenades per invertir el seu ordre, de manera que els seus números es llegeixin 6, 5, 4, 3, 2, 1, amb el quadrat en blanc en la seva posició actual. Poden saltar a la següent casella (si està buida) o saltar per sobre d'una granota fins a la següent casella més enllà (si està buida), de la mateixa manera que ens movem en el joc de dames, i poden anar cap enrere o endavant a gust. Pots mostrar com fan la seva gesta en el menor nombre de moviments possibles? És bastant fàcil, així que quan ho hàgiu fet, afegiu una setena granota a la dreta i torneu-ho a provar. A continuació, afegiu més granotes fins que pugueu donar la solució més curta per a qualsevol nombre. Perquè sempre es pot fer, amb aquella única plaça buida, per moltes granotes que hi hagi."
Per tant, comencem amb les granotes estan en ordre creixent d'esquerra a dreta i amb la casella de l'esquerra buida i hem d'invertir l'ordre inicial deixant de nou la casella esquerra buida. I poden anar cap endavant i cap endarrere.
Podeu intentar resoldre'l també amb aquest aplicatiu. Però atenció, Dudeney diu que és fàcil trobar el mínim de moviments. No és del tot cert. Resoldre el problema no és difícil, però trobar la quantitat mínima de moviments costa una mica més. Especialment si no sabem quina és aquesta quantitat.
A continuació analitzarem el problema i veurem que té aspectes interessants per trobar la forma de calcular la quantitat mínima de moviments i per descriure la resolució també mínima.
Continuem?