L'any 2025 és un quadrat perfecte: (20+25)2. Què millor, doncs, que el primer article de l'any estigui dedicat als quadrats. En concret, presentarem dos problemes que tenen un fort element en comú, però diferències en els objectius d'investigació. Tots dos tracten sobre la dissecció d'un quadrat en quadrats més petits. El primer és més accessible a l'aula en la seva investigació completa. El segon es pot explorar en els primers casos i augmentar la informació documentant-se sobre la seva història i l'estat actual de la seva resolució.
- 1a investigació: graus de "quadriquadriculació".
- 2a investigació: "quadriquadriculacions" mínimes.
Ara es tracta de disseccionar un quadrat d'un costat enter donat en el mínim de quadrats més petits, iguals o diferents, de costats també enters. No s'admeten forats ni superposicions. Exemplificarem el repte amb el plantejament d'un cas particular fet per Sam Loyd al problema "El cobrellit de retalls". La història amb la qual Loyd embolcalla el problema és el d'un grup de dones que aporten diferents peces de tela quadrades i aconsegueixen cosir-les totes, sense retallar-ne cap, formant un quadrat més gran de 13x13.
Ens demana esbrinar la quantitat de dones sabent que és la quantitat mínima de peces quadrades en què es pot descompondre el quadrat gran. Dit d'una altra manera, el problema consistiria a demanar una dissecció mínima d'un quadrat de 13x13 en quadrats més petits de costats enters.
Nosaltres us proposem que procediu ordenadament: quina és la solució mínima per a un quadrat de 2x2? I per a un de 3x3? I per a un de 4x4? I de 5x5?...
Dissecció mínima de 2x2 |
Mirem amb més atenció els dos problemes?